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1. INTRODUCTION

- In this paper we study Aalen's (1980) additive risk model for the regression analysis

of censored survival da Let Xi(t) = )(t,Y) denote the hazard function at time t for

subject i whose covariates are given by the p-vector Y1 = (YI,...,Yp)'. Aalen's model

stipulates that
P

Xi W j W (tY4~ = Yi, CtW (1. 1)
j =1 '

where a = (Oil,...,ap) ' is an unknown vector of hazard functions. More generally, the

covariates can be time dependent, as considered in section 5.

The additive risk model provides a useful alternative to Cox's (1972) proportional %

hazards model when large sample size makes its application feasible. It is capable of provid-

ing detailed information concerning the temporal influence of each covariate. The temporal

influences of the covariates are not assumed to be proportional as they are in Cox's model.

Buckley (1984) has pointed out that additive risk models are biologically more plausible

than proportional hazard models. Also, the use of the proportional hazards model when the

true model is additive risk has been found by O'Neill (i986Jb'to result in serious asymptiotic

bias.

Aalen (1980) introduced estimators for the vector of integrated hazard functions,

A(t) = fo a(s)ds, which use continuous data (containing the exact values of failure and

censoring times). These estimators generalize the well-known Nelson-Aalen estimator, the
natural estimator in the case of one covariate. However, except in the case of one covariate

(Aalen, 1978), the asymptotic theory was not fully developed. One possible form of these

estimators was motivated by a formal least squares principle. This estimator, defined pre-

cisely in (2.3) and (5.4), is refered to here as Aalen's least squares estimator. Aalen observed

that this estimator probably gives reasonable estimates and he applied it to analysis of data

from the Veterans Administration Lung Cancer Study Group.

The first purpose of the present paper is to apply the additive risk model to the

analysis of grouped data in which only the person-years at risk and number of uncensored

%I1 N.
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deaths over successive time intervals, tabulated for various levels of the covariates, are

available. This kind of data typically arises in epidemiological cohort studies involving the

follow-up of large population groups over many years, see Breslow (1986). Our approach is

to use an estimator, constructed using the method of sieves (Grenander, 1981), for which an

asymptotic distribution theory was developed by McKeague (1987). This estimator, called

the integrated histogram sieve estimator, requires only grouped data.

In section 2 we describe the various estimators and confidence bands, give a heuristic

motivation for the integrated histogram sieve estimator and show that it is approximately

unbiased. The results of a simulation study are reported in section 3. In section 4 we apply

the additive risk model to the analysis of grouped data on the incidence of cancer mortality

among Japanese atomic bomb survivors.

The second purpose of this paper is to derive the asymptotic distribution of Aalen's

least squares estimatorThis is done in Section 5. It turns out that, appropriately normal-

ized, Aalen's least squar estimator and the integrated histogram sieve estimator have the

same asymptotic distribItion. In comparing the two estimators this indicates that (asymp-

totically) there is no loss in using the grouped data when the continuous data is unavailable.

We conclude section 5 with a discussion of weighted least squares estimators for the additive

risk model. -,. ,.

2. ESTIMATORS AND CONFIDENCE BANDS

We shall use the random censorship model in which the ith individual's failure time

Xi is assumed to be an absolutely continuous random variable conditionally independent

of the censoring time W, given the covariate vector Y,. Let X = min(Xi,Wi) and 6, =

I(X. _ W) denote the time to the end-point event and the indicator for noncensorship

respectively. Assume that the observation triples (Xi, bi, Y), i = 1,..., n are i.i.d. and the

conditional hazard function A,(t) of Xi given Y satisfies the model (1.1).

Let 1,..., I' be intervals which partition the follow-up period [0, TI over which

estimation of a,,...,ap or A,...,Ap is desired. Specifically, let 1, (b,,br + t,],

* 2
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r = 1,...,d. The total time that the ith individual is observed to be at risk in inter-

val I,. is given by

Tir = L I(x, > t)dt.

The indicator that the ith individual undergoes an uncensored failure in Jr is given by

b61r = 6il(Xif~r).

Let C be the p x 1 vector
n

Cr = Zi-Y
i= 1

and let Dr be the p x p matrix

r=

In the sequel we use the following notational convention: for any square matrix K, K-'

denotes the inverse of K if K is invertible, the zero matrix otherwise. The histogram sieve

estimator is defined by &(t) = &, when t c I, where &r = (&,a) is the p x 1 vector

* given by &r = D:'C,. Note that the histogram sieve estimator can be evaluated from the

grouped data consisting of the total time at risk and the number of uncensored failures in

each interval I,,..., T, tabulated for all realized levels of the covariates.

The form of the histogram sieve estimator can be motivated by the following argu-

ment. Suppose the time intervals I,, 72 ,..., Id are short enough so that the hazard rates

A1(t) for all subjects can be regarded as constant within each interval 1r = (b,, b, + eI, that

is, we can take a(t) = ar for t c Jr. This implies A1(t) = Aj, for t E Jr where Ai, = Y1'a,.

Under this condition we can show that E(D,.arJF,.) = E(CIr) where Yr is the

a-field generated by the covariates Y,,...,Y, and the events {X1i > b,}, i = 1,...,n. If the

number of observed failures in I,. is large, the Law of Large Numbers will imply Da, ; Cr.

This suggests the estimator &r = D'1C which is the histogram sieve estimator.

To show that E(Drajl,) = E(CIY,7) we shall prove the stronger result E(DaIg,)

= E(C,.Ig,.) where g, is the larger a-field generated by 7, and the censoring times

3.



Wi,...,W,. From the definitions we have

nE(CrI gr) = Z 1 E(ilgr,) and

i=1

E(Drctr 1.9) = >Y(1CtX-)E(Tir i.9).

Let Zi, = (Wi - br) A r. Given ki > br, the time Ti, is an exponential random variable

(with parameter Air) truncated at Zir so that we obtain

ECTi rlg.) = Ail'[1 - exp (-,XirZr)]I(Xi > br).

Similarly E(brj.9r) = P{X, > br, Tr < Zirl.r}

= 1- exp (-ArZ,)](x 1 > br).

Substituting these in the above formulas for E(Crlgr) and E(Dcar 7) and noting that

Yi'fr = Air, we obtain the desired equality.

Let Mr be the number of subjects at risk in I, this is mr = , (X > b,). The

histogram sieve estimator &,r will be approximately unbiased as long as Mr is large and

Airt, is small for all i; the probability (conditional on X1 > b,) of failure during I is small

for all subjects i. In showing this we use the notation

F7 = E(DI9r), 0r = Dr - Fr and A, = C, - Far,.

Both E(Orl.r) = 0 and E(A,.I9,) = 0 with the second fact following from

Fra, = E(Dr,.rj9r) = E(C,.I9,)

which was demonstrated previously. Explicit formulas for Or and A, are

n n
=,. YYi'Ti*, and A,.= Yi6b,

i=1 l

with T*,. = Ti, - E(T,.I.Ig) and ,*. = ,ir - E(6 rl.g ) .
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Since Airtr is small, it is easy to see that Ti* is small with high probability. This

implies Or is small relative to F,. and justifies the series expansion

D-1 = (FWr + V )-' = Fr-' - F,-%,F- + F 't¢ F ¢ Fr- -

Using this expansion and C, = Frar + Ar we find (ignoring higher order terms)

E(Dr;'Crlg,) -- ci, + E(Fr1 'brFr7 -arI.r) -

Both of the bias terms are O(m,-"). For example, writing 0, and A, as sums and using

the independence of the subjects gives

n

E(Fr-VFTA.I~9,) r-= YIYtIFJ1 YiE(Ti*,rb*,I )..

This sum contains M nonzero terms. We expect the norm I F-' 11 to be O(m ') so that

each nonzero term in the sum will be O(m, 2 ). Thus the sum is O(m,. Mrn?) = O(r ).

The other bias term is handled similarly.

Note, we are assuming above that the hazard rates for all subjects are constant

within each interval Ir. If the hazard rates vary within the intervals, this will introduce an

additional source of bias.

The integrated histogram sieve estimator is denoted A(t) = f' &(s)ds, where integra-

tion of & is carried out componentwise. Let A(t) = fo a(s)ds. Under conditions (C1)-(C4)

in section 5.2, given that the partition Id,..., 2 becomes finer as n -- oc in such a way

that V/i max(t-,..,) -+ 0 and n min(t,...,td) -- 00, then an asymptotic 100(1- a)%

confidence band for Aj is given by

A(t) ± can'/ 2 6j(T)'/ 2 (1 + ),t [0, T] (2.1)
di (T)

where c, is the upper a quantile of the distribution of supt, 10,j] IB°(t)I, B ° is the Brownian

bridge process,

W -- 4i.(s)ds (2.2)

S 5
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where 3(t) = . if t c I, and

P P P

U=1 V,=1W=1

n

kM (u,v, W) = Yi UYiv Yi.Ti,
i=1

A table for the distribution of supt,10,j, IB°(t) I has been given by Hall and Wellner (1980).

An asymptotic 100(1 - a)% confidence interval for Ay(t), at fixed t i [0, T], is given by

A.(t) ± z.,12n- l2dy(t)1/2,

where Z,,/2 is the upper a/2 quantile for the standard normal distribution.

Aalen's least squares estimator is defined by

A (t) = Z tY (2.3)
6i=1

where the summation is over individuals i whose failure times are uncensored and less than

or equal to t, Di is the p x p matrix

D.= Yk Yk (2.4)

where the summation is over individuals k at risk at time X1 .

Under conditions (A1)-(A3) in section 5.1 an asymptotic 100(1 - a)% confidence band for

A3 is given by

A.(t) ± c,,,n/ (T)/ (I + $t ) 0,t][oTI (2.5)

where c, is defined above and

G,(t) = , (2.6)

P P Piij n A- I i) E~fi 6, = , W

u1I ,=I W=1

6
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An asymptotic 100(1 - a)% confidence interval for A 3 (t), at fixed t c [0, T], is given by

Ai(t) ± Z,,/2,-1/2G(5t)W /2.

Note that, unlike the confidence intervals, the confidence bands given above are de-

pendent on the choice of T. As T increases the band widens at all points. It also becomes

more unreliable since the effective sample size nT = #{i : i > T} for estimating the

asymptotic variance at time T is getting smaller. In practice we found it reasonable to set

T so that nT is at least 10% of the sample size. This is the case for the simulated data in

section 3 and for the atomic bomb survivor data in section 4.

3. ADDITIVE RISK MODEL SIMULATIONS

In order to evaluate the performance of the confidence intervals and bands proposed

for grouped data, a Monte-Carlo experiment was performed to see whether their asymptotic

properties take effect under sample sizes, grouping and censoring found in typical applica-

tions. The simulation model used p = 2 covariates with i.i.d. uniform distributions on the

lattice {.j,r = 1,...,81 and corresponding hazard functions al(t) = 1, 2 (t)= tt > 0.

The censoring time was independent of the failure time and exponentially distributed with

parameter /, for various values of fl. The follow-up period was [0, 1]. The sieve intervals

..... , d were of equal length. For various combinations of n, d, and /3, 500 samples

of grouped data were generated via the random censorship model. For each of these 500

samples we constructed the asymptotic 95% confidence bands (2.1) for the true integrated

hazard functions A 1 (t) = t and A 2 (t) = 2 on the interval [0, 1]. The proportion among

the 500 bands that contained A i on the interval [0, 1] was then determined (for j=1 and

2). The sample size n was set to 1000 and 4000. The sieve dimension d was set to 8, 16,

and 64. The censoring parameter / took the values .3 and 1.5 which amounted to 28% and

68% censoring prior to the end of follow-up, respectively. With /3 = .3 (/3 = 1.5) there were

on average 33% (10%) surviving beyond the end of follow-up.

7
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The results are displayed in Tables 1 and 2 below. The random number generator
used the same initial seed for the runs marked a and different seeds for the runs marked b
and c. Runs with the same initial seed have identical failure times.

Table 1. Observed Coverage Probabilities with 500 Simulations
using Exponential Censoring (fl = 0.3) - 28% Censoring.

n = 1000' n - 4000b
d Covariate 1 Covariate 2 Covariate 1 Covariate 2

8 .976 .982 .982 .966
16 .972 .980 .978 .964
64 .958 .970 .966 .960

Table 2. Observed Coverage Probabilities with 500 Simula-
tions using Exponential Censoring (# = 1.5) - 68% Censoring.

n = 1000' n = 4000C
d Covariate 1 Covariate 2 Covariate 1 Covariate 2

8 .978 .982 .982 .982
16 .972 .980 .980 .984
64 .958 .974 .974 .980

Observe from Tables 1 and 2 that the bands appear to be conservative but as d

increases the coverage probabilities, on the whole, get closer to their nominal value of .95.

This is true for both covariates under both light (28%) and heavy (68%) censoring. On the

other hand, in all the simulations we carried out, the coverage probabilities for the pointwise

confidence intervals were very close (not significantly different) to .95, a typical case being

given in Table 3 below (see column 5).

8 ',
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Table 3. True and Average Estimated Cumulative Hazard
Function, Standard Deviation of the Simulated Estimates and
confidence Interval Coverage Probabilities with 500 Simulations,
28% Censoring (3=0.3), n = 1000, d = 8, Covariate 1.

True Average of Standard deviation Proportion of
Time integrated simulated of simulated confidence intervals

hazard estimates estimates containing the
true value

.125 .125 .1236 .026 .940

.25 .25 .2513 .038 .940

.375 .375 .3781 .049 .954
.5 .5 .5024 .060 .948
.625 .625 .6243 .071 .952
.75 .75 .7501 .082 .960
.875 .875 .8736 .096 .948 a
1.0 1.0 1.0010 .113 .948

Also observe from Table 3 that the estimators appear to be unbiased, in support of

the heuristic arguments in section 2.

Figures 1-4 contain plots of the estimators under light (28%) and heavy (68%) cen-

soring for d=8 and d=64. The sample size n was set to 2000 and the random number

generator used the same initial seed for all runs, so the failure times used in each run are

identical.

[Insert Figures 1-4 here]

As expected, the bands are wider under the heavier censoring; compare Figures 3 .

and 4 with Figures 1 and 2. Also, it appears that the estimator which uses d=8 (in Figures

1 and 3) is a smoothed version of the estimator which uses d==64 (in Figures 2 and 4).

Although the estimators are adequate in each case, notice that under heavy censoring the

estimator which uses d=64 (in Figure 4) oscillates considerably when t is close to 1. This

is due to the very small number of observed failures (averaging less than 5) for each of



the sieve intervals in this region. A more flexible procedure would be to merge adjoining

intervals which contain very few observed failures. For contrast, in Figure 2 notice that the

oscillation is negligible. This is because of the lower censoring rate which gives an average

of more than 10 observed failures per interval near t=1.

4. APPLICATION TO THE ANALYSIS OF CANCER MORTALITY
AMONG JAPANESE ATOMIC BOMB SURVIVORS

The Radiation Effects Research Foundation (RERF) in Hiroshima, Japan, has fol-

lowed since 1950 a group of over 100,000 atomic bomb survivors. Data on these survivors

is the primary source of information on the epidemniologic effects of ionizing radiation. The

National Research Council (1980) report and the report by Kato and Schull (1982) contain

detailed analyses of these data. However, as noted by Pierce and Preston (1984), a diffi-

culty with the methods used in these reports is that they do not make explicit allowance

for temporal variation in risks; they simply average the risk over the follow-up period.

Pierce and Preston (1985) analyzed cancer mortality among the atomic bomb sur-

vivors using a parametric additive risk model which they called the excess risk model. They

found that background and excess rates of cancer mortality vary markedly with age at

exposure and time since exposure.

The approach taken here is to fit a nonparametric additive risk mode] of the form

(1. 1) for each of 4 cohorts defined by the age at exposure intervals 0-9, 10-19, 20-34 and

% 35-49 years of age at time of bomb. The time variable t is time since exposure, ranging from

* 5 to 37 years over the follow-up period from 1950 to 1982. The only censoring prior to the

end of follow-up is that due to other (non-cancer) causes of death. Summary information

for each cohort is give in Table 4.

.1P
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Table 4. Cohort Sizes, Summary Mortality Figures and Cen-
soring Prior to End of Follow-up.

Age at Deaths due to Deaths from
exposure Cohort size* Cancer excluding all causes Censoring

Leukemia

0-9 18416 93 728 87%
10-19 19242 349 1715 80%
20-34 17694 949 3075 69%
35-49 20916 2788 11234 75%

* Approximate, having been estimated from the grouped data.

Three covariates are used. For individual i they are: Yj, = indicator (male), Yi2

indicator (female), Y 3 = dose (in units of 100 rads). The hazard functions a, and a 2 are

the background cancer mortality rates for males and females respectively. The third hazard

function a 3 is the excess caneer mortality rate per 100 rads of radiation exposure.

In the data provided to us by the RERF time since exposure is grouped into eight

4-year intervals: 5-9,. 33-37 years since exposure. It is natural to use these eight time

intervals as the partition of the follow-up period in the evaluation of the sieve estimators. As

in Pierce and Preston (1985) the dose variable is taken as the midpoint of one of the six dose

groups: 0, 1-50, 50-100, 100-200, 200-300, > 300 rads with dose=400 for dose > 300. Average

doses for the dose groups are not used because of current reevaluation of the dosimetry.

Also, the analysis is limited to the epithelial cancer mortality, in which leukemia mortality

is excluded.

Figures 5-8 indicate our estimates and 95% confidence intervals and bands for the

background and excess cumulative cancer mortality rates as functions of time since exposure.

The estimates of Pierce and Preston are also plotted. All estimates are given in units of

deaths per 1000 persons at risk. Pierce and Preston's parametric model for the cancer

mortality rate A(t) is given by

A(t) = exp {vo + vi., + v2. log(e + t)} + fd exp {po, + pI log(t)}, (4.1)

11 J



where e = midpoint of age at exposure interval, s = sex, and d = dose. The first and second

terms in (4.1) represent the background and excess cancer mortality rates which Pierce and

Preston fitted by maximum likelihood. We have integrated these to provide a comparison

with the integrated histogram sieve estimates.

[Insert Figures 5-8 here]

From Figures 5-8 we see that there is a significant dose effect (i.e. the band for

dose does not contain the zero function) for all cohorts. This is despite the fact that the

confidence bands with eight sieve intervals are conservative according to our simulation

results in section 3. In interpreting Figures 5-8 bear in mind that the vertical scales are

different for each cohort. Despite appearances, the dose effect bands have roughly the same

width for each cohort.

On the whole our estimates are in agreement with those of Pierce and Preston (1985).

We also observe that the relative risk (dose effect vs. background) decreases sharply with

age at exposure. Our estimates for the dose effect are somewhat higher than Pierce and

Preston's, but their estimates are still within our 95% bands. However, there is a signifi-

cant difference between our estimates and Pierce and Preston's for the female background

mortality rate in all but the 0-9 years of age cohort.

The data used for the analyses in this section are contained in the file

R10CANCR.DAT which is described in the Life Span Study Report 10, Part I published

by RERF. The file was supplied to us by RERF which is a private foundation that is funded

equally by the Japanese Ministry of Health and Welfare and the U.S. Department of Energy

through the U.S. National Academy of Sciences. The conclusions reached in this paper are

those of the authors and do not necessarily reflect the scientific judgement of RERF or its

funding agencies.

5. ASYMPTOTIC RESULTS

In this section we give a general formulation of the asymptotic results which underlie

the confidence bands in section 2. Definitions of the martingale concepts used in this section

can be found in the review paper of Andersen and Borgan (1985).

12



First we look at the basic counting processes and martingales involved in the random

censorship model. Let Ni(t) be the indicator of an uncensored failure for subject i prior to

time t,

N (t) = I(X, 5 t,6, = 1).

Aalen (1978) showed that the counting process Ni(t) can be written in the form

N1 (t) = E ai(s)Yi(s)ds + M1 (t),

where Yi(t) - YiI(Xk > t) and M is a square integrable martingale with respect to the

filtration T = a(N(s), Yii(s+), 0 < s < t, i > 1,j = 1,... ,p). Note that no two of the

counting processes N,...,N, jump simultaneously.

More generally, let N(t) = (N(t),. .. ,N(t))', t c [0,1] be a multiviariate counting

process with respect to a right-continuous filtration (,), i.e. N is adapted to the filtration

and has components Ni which have sample paths which are non-decreasing, right-continuous

step functions, zero at time zero, and with jumps of unit-size. Moreover, suppose that no

two components jump simultaneously. Let A be the compensator of N, so that N = A + M

where M = (MI,..., M,,)' and Mi,..., M,, are local martingales. Aalen (1980) introduced

the model

A(t) = j Y(s)a(s)ds (5.1)

where a = (a 1 ,...,ap)' is a vector of unknown nonrandom integrable functions, Y(t) =

(Yi(t)) is an n x p matrix of covariate processes, with Yi(t) representing the jth covariate

for the ith subject a time t. The covariate processes are assumed to be predictable and

locally bounded (which is the case for instance if they are left-continuous with right-hand

limits and adapted). This model allows much more general censoring mechanisms (quite

arbitrary apart from being predictable) than the one considered in section 2. Unlike Aalen

we do not assume, unless explicitly stated, that ENj(1) < oo (in which case Mi is a square

integrable martingale), only that Ni(1) < 0o almost surely.

Aalen (1980) discussed estimators A* of A of the form

A*(t) =j Y "(s)dN(s), (5.2)

13
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where Y-(s) is a predictable generalized inverse of Y(s). In the case p = 1, the choice

n

(Y-(s))li= ( YkI,(s)) , i= 1,...n
k=1

(where 1/0 = 0) gives the Nelson-Aalen estimator for which a general asymptotic theory

was derived by Aalen (1978). The powerful martingale techniques used in this theory allow

the conventional i.i.d. structure to be superceded; only very weak asymptotic stability and

Lindeberg conditions need to be imposed on the (single) covariate, see Andersen and Borgan

(1985, p. 136).

The case p > 1 is more complicated. First, it is not clear which generalized inverse

Y- of Y to use. Aalen (1980, Remark 1) considered

Y-s) = (Y'(s)Y(s))-'Y(S) (5.3)

which he motivated by a formal least squares principle and noted that the resulting estimator

A (t) = j(Y'(s)Y(s))-'Y(s)dN(s) (5.4)

probably gives reasonable (though not optimal) estimates of A. Second, the problem of

finding the asymptotic distribution of the general estimator of the form (5.2) is intractable.

5.1. Aalen's least squares estimator

Despite the difficulties alluded to above it is possible to obtain the asymptotic distri-

bution of A in a straightforward way by applying Rebolledo's Central Limit Theorem for

local square integrable martingales in the form given by Andersen and Gill (1982, Theorem

1.2). Let D[O, 11P be the product of p copies of D[O, 1] and equip it with the Skorohod

product topology. Denote
.kf(t) = 1 Z t () (t) (5.5)

i n

R.,(t) = - ( Yi(t)Y),(((t,(5.)

n

i=1

14
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CONDITIONS

(Al) (Asymptotic stability). For j,k,t = 1,...,p there exist bounded functions K,k
and Rjkt defined on [0,11 such that

Pm

sup 'k (t) - K.k(t)- 0-1o0,11

sup Ijike(t) - Rjke(t)I P 0.

telo, 1l

(A2) (Lindeberg condition). For each j = 1,...,p

n-sup jY (t) I P 0.
i't

(A3) (Asymptotic regularity condition). The p x p matrix function K(t) = (Kik(t))
in (Al) satisfies

inf det K(t) > 0.

THEOREM 5.1. Under conditions (AI)-(A3)

vf(A.-A) + m in D[0,1]P

where m, is a p-variate continuous Gaussian martingale with m(0) = 0 and covariance

functions

Cov(m(t),mk (t)) = G.(t)

where

P P P rt

Gjk(t) = E E L0 R.,.(8)(K-(s))j.(K-'()). a,(s)ds. (5.7)
U=1 V~=1 U)

The following theorem shows that

Gk(t) = Z ]k k dA,,(s) (5.8)

is a uniformly consistent estimator of the covariance matrix of the limiting Gaussian mar-

tingale. In the survival analysis context G. is given by (2.6).

15
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THEOREM 5.2. Under conditions (A1)-(A3), for each j,k = 1,...,p

sup I Gk(t) - Gik (t)I1*0.
t, i0, 1]

Combining Theorems 5.1 and 5.2 with standard results from Billingsley (1967, Theorems

4.1 and 5.1) shows that (2.5) is an asymptotic 100(1 - a)% confidence band for Ay. The

transformation to the Brownian bridge which is used in deriving this confidence band is

described by Andersen and Borgan (1985, p. 114).

The Lindeberg condition (A2) holds if the covariates are bounded by random variables

having a bounded rth moment for some r > 2, c.f. the discussion of Andersen and Gill (1982,

p.l110) in the context of Cox's proportional hazards model.

The following theorem gives conditions under which (A1)-(A3) hold in the i.i.d. case

in which the (Ni,Yt,...,Yp) are i.i.d. replicates of (N1 ,Y 11 ,... Ylp).

THEOREM 5.3. In the i.i.d. case with Y left-continuous with right-hand limits, conditions

(A1)-(A3) are satisfied if for each j = 1,...

E (sup jY,,.(t) I < 00 (5.9)

and the pxp matrix K(t), now defined by Kjk(t) = EYj(t)Ylk(t), satisfies condition (A3).

5.2. Integrated histogram sieve estimator

The histogram sieve estimator is defined in the setting of the counting process model

(5.1) by &(t) = a,, for t El,, where &r (&,j) is the p x 1 vector give by &,. D7'Cr,

and C, is the p x 1 vector

C, = VL '(s)dN(s),

D,. is the p x p matrix

.= .Y'(s)Y(s)ds.

Note the similarity between the integrated histogram sieve estimator

Af(t) = &(s)ds

16



and Aalen's least squares estimator. However A is not (7k) - adapted and the derivation of

its asymptotic distribution theory is much more difficult. The following result of McKeague

(1987) gives the asymptotic distribution of A.

CONDITIONS.

(C1) (Asymptotic stability). For j,k,t = 1,...,p there exist function Kjk and Rjkt
defined on [0, 1] such that

sup I Kk(t) - (t) Op(n)

L'

sup IRjkdt)- Kjkt(t)I - 0.
t' 0, 1]

(C2) (Lindeberg condition). Same as (A2).

(C3) (Asymptotic regularity condition). The p x p matrix K(t) = (Kjk(t)) is nonsin-
gular for all t c [0, 1].

(C4) The functions aj, Kjk,Rikt j,k,f = 1,...,p are Lipschitz.

THEOREM 5.4. If conditions (C1)-(C4) hold, EN ( 1) < co for all i > 1,

Vrmax(,...,ed) -* 0, and n mint,...,d) --+ oo then

n(A - A) -- m in CIO,1V'

where m is the p-variate continuous Gaussian martingale of Theorem 5.1.

The appropriate (sieve based) estimator of the covariance matrix of the limiting

Gaussian martingale is given by
P P P et

Gjk(t) = &u(S) y I ( ds
1 tV-= t =1

where .f(t) is the p x p matrix with entries

kk 1 E f Yi1 (s)Yk(s)ds, for t Ir

17



and
= f, Y,.(s)Y.(s)Y(s)ds, for t c I,.

In the survival analysis context G3 , simplifies to (2.2). It can be shown, under the hypothe-

ses of Theorem 5.4, that dj is a uniformly consistent estimator of Gjj (McKeague, 1987).

It follows that (2.1) is an asymptotic 100(1 - a)% confidence band for Aj

5.3. Weighted least squares estimators

Neither Aalen's least squares estimator nor the integrated histogram sieve estimator

is an optimal estimator. In the case of a single covariate the Nelson-Aalen estimator is

optimal. However, if weighted least squares is used instead of ordinary least squares, it is

possible to improve th performance of Aalen's le.%st squares and the integrated histogram

sieve estimators. Specifically, consider the weighted least squares estimator

A(t) =f(Y(s)W()Y(s)) Y(s)W(s)dN(s) (5.10)

where W(t) is the n x n diagonal matrix having ith diagonal entry
P--

Wi(t) = (E&J(L)Y1 '(t)) , i- 1,...,n
j=1

where &j is a predictable estimator of a " and 1/0 0. Note that A is an estimator of the

form (5.2). In the case of a single covariate A coincides with the Nelson-Aalen estimator

and no companion estimator &I is needed. For more than one covariate a predictable

estimator &j for a, can be constructed by kernel smoothing of Aalen's (ordinary) least

squares estimator A as follows. Let

+(t) 10 K(tb8)dA,(s),

where K is a continuous function having support [0,1] and integral 1, and b,, > 0 is a

bandwidth parameter which tends to zero as n --+ oo. Under conditions on aj, k and b,,

uniform consistency of &. can shown using similar techniques to those of Ramlau-Hansen

(1983) for the Nelson-Aalen estimator. Finally, along the lines of the proof of Theorem

18



5.1, it can be shown under mild regularity conditions that V/7(A - A) converges weakly in

D[o, 1]P to a p-variate Gaussian martingale m with m(O) = 0 and covariance matrix

Cov(m(t),m(t)) = V-'(s)ds

where (in the i.i.d. case) V(s) is the p x p matrix with entries

r Yi,(t)Ylk(t)
Vik (t) = E P=k E t~l ca(t)Yut(t) J

The weighted version of the histogram sieve estimator and its integrated counterpart can

be developed in an analogous fashion. The weighted least squares approach will be treated

at length in a subsequent paper.

APPENDIX

PROOF OF THEOREM 5.1. First split V/n(A(t) - A(t)) into four parts using (5.1), (5.4)

and (5.5):

V (,4(t) - A(t)) = -- '(s) Y'(s)dM(s) (A.1)

+ - (J(s) - 1) K'(s) Y'(s)dM(s) (A.2)

+ 1 j J(s)[-'(s) - K-'(s) Y'(s)dM(s) (A.3)

+ Vi'(J(s) - 1)dA(s) (A.4)

where
J(t) = I(K(t) is invertible). (A.5)

The local martingales Ml,... ,Mn are local square integrable martingales on the time in-

terval [0, 1] and their predictable quadratic variation processes are given by

Jot
< Mi, Mi > (t) = Ai,(s)ds and < MiM i > (t) = 0, i $13 (A.6)
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where
P

A (t) = r1 aj(W Y,3(W)
j=1

Now consider (A.1) which can be written as X1)(t) 1 -t,X V'(t))' where

X.-)(t) = H!7) (s)dM,(s)
0

Hi)(t) =7= 1: (K'(t))jkyck(t).

Condition (A3) implies that the functions (K-(t))k are bounded so that 3 is a local

square integrable martingale. Also, from (A.6)

so that using the asymptotic stability condition (Al), for all j, k and t

< - I4 , ( > (t) - * G

as n --+ co. Next, the boundedness of the functions (K-(t))j; and condition (A2) imply

the following Lindeberg condition: for all j and E > 0

11 H! )(t)2A,(t) I(IH7)(t)I > E)dt 0
i=l j%

as n -* oo. By Rebolledo's Central Limit Theorem for local square integrable martingales

in the form given by Andersen and Gill (1982, Theorem 1.2) it follows that m in

D[0, 1]P.

Note that by conditions (Al) and (A3),

P(k(t) is invertible for all t E (0, 1) - 1 (A.7)

as n -- c. This shows that terms (A.2) and (A.4) converge uniformly to zero in probability

as n -- oo .
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I.
Finally consider (A.3) whose jth component is given by

Z~~() I n~ ft jE J(s) 1j [k'(s) - K'(s)-k Y-k(s)d 1j(s)

which is a local square integrable martingale. By Lenglart's (1977) inequality, for each

C >0, 7 > 0

P( sup I Z ') (t)l > E) + p? (,.,.) Z(n,) >()1 A8
t 0,11 j6

Now evaluate < Z (),Z (n) > using (A.6) to obtain

<p - J(s){jk'(t) - K-'(t)jfkYk(t) 2)\i(t)dt

n in k=1

sup j,[o, ()- (t)]-I}{-I Y,'(s) A)(s)ds}. (A.9)
k=I tflo,1I i= 

By the componentwise continuity of the matrix inverse operation and conditions (A1), (A3)

we have for the first term in (A.9)

sup I[k-'(t)-K-'(t)].kl -+ 0. (A.1O)
tf[o,I

Also, using condition (Al), for the second term in (A.9)

n ~ f Y2(s) A P(s)ds P I Rkky(t)a 3 (t)dt. (A.11)
ni=1-0 j=1 }o

Combining (A.8)-(A.11) we conclude that (A.3) converges uniformly to zero in probability

as n --* oo. This completes the proof of the theorem. I

PROOF OF THEOREM 5.2. Fix j and k. Let L(t) and L(t) be the 1 x p vectors with

components
P p

L,(t) = Z R

P p

]-,,(t) E E Z h.,,w (t) (k-(t)) ,I-v (t)) k""

t)~ =2 w1I
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Using (5.1), (5.4) and (5.5) we can write

Gjk(t) - G-k(t) - j L(s)K-'(s) Y'(s)dM(s) (A.12)
n 0o

+ j J(s)_(L,(s) - L (s))dA (s) (A.13)

+ f (J(s) - 1)L(s))dA(s). (A.14)

The term (A.14) is dealt with using (A.7). From (A.10) and the asymptotic stability con-

dition (Al)

sup I.(t) - L(t)j - 0,
t [0, 1]

which deals with (A.13). Finally, using Lenglart's inequality it is seen that (A.12) also

converges uniformly in probability to zero. I

PROOF OF THEOREM 5.3. Apply the Strong Law of Large Numbers in D[0, 1] (Rao,

1963) in the reversed time direction. I
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Key to Figures 1-8

Thick lines = integrated histogram sieve estimates.

Regular dashed lines = 95% pointwise confidence limits.

Thin lines = 95% confidence bands.

Irregular dashed lines = true integrated hazard functions (in Figures 1-4).

Lines marked with boxes = estimates of Pierce and Preston (in Figures 5-8)
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